Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.058
1.
Heliyon ; 10(9): e29711, 2024 May 15.
Article En | MEDLINE | ID: mdl-38707332

Objective: This study aimed to evaluate the efficacy of the Xianling Gubao (XLGB) capsule alone and its combination therapy in primary osteoporosis (POP). Methods: Databases including PubMed, Embase, Cochrane Library, Web of Science, CNKI, Wanfang Data, VIP, and SinoMed were searched from their inception to January 16, 2024, for randomized controlled trials (RCTs) investigating the XLGB treatment for POP. A network meta-analysis (NMA) was performed to evaluate the efficacy and safety of multiple interventions in the treatment of POP. The Cochrane risk-of-bias tool was used to assess the quality of RCTs included in the meta-analysis. Software Stata (version 15.0) was used for statistical analysis. The surface under the cumulative ranking curve (SUCRA) method was used to present the findings from this NMA numerically and graphically by ranking multiple interventions. Results: A total of 107 RCTs were included in the meta-analysis, involving 10,032 participants and 21 interventions. Meta-analysis showed that XLGB + calcium (Ca) + calcitonin (99.9 %) was the most desirable treatment option for improving clinical efficacy. XLGB + Ca + bisphosphonate (BP) was most effective for improving bone mineral density (BMD) at the lumbar spine, femoral neck BMD, and serum bone Gla protein (BGP). SUCRA values for improving these three outcome measures by XLGB + Ca + BP were 87.4 %, 77.2 %, and 84.3 %, respectively. XLGB + calcitonin was the optimal option in terms of safety evaluation and improving visual analogue scale (VAS), with the SUCRA values being 89.6 % and 94.9 %, respectively. Conclusions: The XLGB combination therapy is a desirable option for treating POP as it can effectively improve the therapeutic effects, BMD, and serum BGP, as well as relieve pain in patients with POP.

2.
J Oral Rehabil ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38725254

BACKGROUND: Self-care can improve overall oral health. However, few studies have investigated this in community-dwelling older adults with oral frailty. The Capability, Opportunity, Motivation and Behaviour (COM-B) model may be an appropriate framework to identify factors that affect self-care ability. OBJECTIVES: The purpose of this study was to investigate the current status of and factors influencing self-care ability in community-dwelling older adults living with oral frailty, and to analyse the risk factors of low self-care ability. METHODS: Two hundred seventy-five community-dwelling older adults with oral frailty participated in this cross-sectional study from October 2022 to March 2023. Participants underwent evaluations of oral health knowledge and behaviour, oral health literacy, nutritional condition, social support, oral health-related quality of life, self-efficacy and self-care ability using questionnaires. The self-care ability of older adults was assessed using the Chinese version of self-care ability scale for the elderly (SASE). The influencing factors were evaluated by single-factor analysis, correlation analysis and multi-factor analysis. Furthermore, we conducted additional analysis, wherein self-care ability was analysed as a categorical variable. RESULTS: Of the participants, the SASE score was 62.43 ± 7.33, and 73.09% were inadequate at self-care ability. There was a positive correlation between the level of self-care ability and each variable (p < .001). Multiple linear regression showed that health literacy (p < .001), age (p < .001), nutritional condition (p = .001), gender (p = .003), quality of life (p = .014) and self-efficacy (p = .040) were significantly associated with decreased self-care ability (R2 = 0.444, F = 19.241). Binomial logistic regression analysis showed that gender, educational level, nutritional condition, oral health literacy and quality of life (all P<0.05) were risk factors for developing low levels of self-care ability. CONCLUSION: This study suggests that health literacy, age, nutritional condition, quality of life, gender and self-efficacy are important factors that influence self-care ability in community-dwelling older adults living with oral frailty.

3.
Article En | MEDLINE | ID: mdl-38695863

Human breast milk contains lactic acid bacteria (LAB), which have an important influence on the composition of the intestinal microbia of infants. In this study, one strain of an α-hemolytic species of the genus Streptococcus, IMAU99199T, isolated from the breast milk of a healthy nursing mother in Hohhot city PR China, was studied to characterise its taxonomic status using phenotypic and molecular taxonomic methods. The results indicated that it represented a member of the mitis-suis clade, pneumoniae subclade of the genus Streptococcus. It is a Gram-stain-positive, catalase-negative and oxidase-negative bacterium, and the cells are globular, paired or arranged in short chains. The results of a phylogenetic analysis of its 16S rRNA gene and two housekeeping genes (gyrB and rpoB) placed it in the genus Streptococcus. A phylogenetic tree based on 135 single-copy genes sequences indicated that IMAU99199T formed a closely related branch well separated from 'Streptococcus humanilactis' IMAU99125, 'Streptococcus bouchesdurhonensis' Marseille Q6994, Streptococcus mitis NCTC 12261T, 'Streptococcus vulneris' DM3B3, Streptococcus toyakuensis TP1632T, Streptococcus pseudopneumoniae ATCC BAA-960T and Streptococcus pneumoniae NCTC 7465T. IMAU99199T and 'S. humanilactis' IMAU99125 had the highest average nucleotide identity (93.7 %) and digital DNA-DNA hybridisation (55.3 %) values, which were below the accepted thresholds for novel species. The DNA G+C content of the draft genome of IMAU99199T was 39.8 %. The main cellular fatty acids components of IMAU99199T were C16 : 0 and C16 : 1ω7. It grew at a temperature range of 25-45 °C (the optimum growth temperature was 37 °C) and a pH range of 5.0-8.0 (the optimum growth pH was 7.0). These data indicate that strain IMAU99199T represents a novel species in the genus Streptococcus, for which the name Streptococcus hohhotensis sp. nov. is proposed. The type strain is IMAU99199T (=GDMCC 1.1874T=KCTC 21155T).


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Milk, Human , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Streptococcus , RNA, Ribosomal, 16S/genetics , Humans , Female , China , DNA, Bacterial/genetics , Milk, Human/microbiology , Streptococcus/genetics , Streptococcus/isolation & purification , Streptococcus/classification , Fatty Acids/analysis , Nucleic Acid Hybridization , Genes, Bacterial
4.
Environ Sci Technol ; 58(18): 8065-8075, 2024 May 07.
Article En | MEDLINE | ID: mdl-38597221

We report a previously unrecognized but efficient reductive degradation pathway in peroxydisulfate (PDS)-driven soil remediation. With supplements of naturally occurring low-molecular-weight organic acids (LMWOAs) in anaerobic biochar-activated PDS systems, degradation rates of 12 γ-hexachlorocyclohexanes (HCH)-spiked soils boosted from 40% without LMWOAs to a maximum of 99% with 1 mM malic acid. Structural analysis revealed that an increase in α-hydroxyl groups and a diminution in pKa1 values of LMWOAs facilitated the formation of reductive carboxyl anion radicals (COO•-) via electrophilic attack by SO4•-/•OH. Furthermore, degradation kinetics were strongly correlated with soil organic matter (SOM) contents than iron minerals. Combining a newly developed in situ fluorescence detector of reductive radicals with quenching experiments, we showed that for soils with high, medium, and low SOM contents, dominant reactive species switched from singlet oxygen/semiquinone radicals to SO4•-/•OH and then to COO•- (contribution increased from 30.8 to 66.7%), yielding superior HCH degradation. Validation experiments using SOM model compounds highlighted critical roles of redox-active moieties, such as phenolic - OH and quinones, in radical formation and conversion. Our study provides insights into environmental behaviors related to radical activation of persulfate in a broader soil horizon and inspiration for more advanced reduction technologies.


Soil , Soil/chemistry , Free Radicals/chemistry , Soil Pollutants/chemistry , Oxidation-Reduction , Halogenation
5.
Nanomaterials (Basel) ; 14(8)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38668182

There is much interest regarding the "coupled ferroelectricity and superconductivity" in the two-dimensional material, bilayer Td-MoTe2; however, the value and the type of electric polarization are unknown. The device structure and the measurement method show that the measured material is the composite of the pseudo-bilayer quantum Hall system, with a thickness of about thirty-six nanometers. The derived dielectric hysteresis loops and the calculated electronic structure reveal that the condensed large polarons are responsible for the reverse ferroelectricity and the coupled superconductivity. The maximum value of polaron-type electric polarization is ~12 nC/µm2 or 1.2 × 104 µc/cm2.

6.
Small ; : e2400963, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38686696

Biomolecule-functionalized nanoparticles represent a type of promising biomaterials in biomedical applications owing to their excellent biocompatibility and versatility. DNA-based reactions on nanoparticles have enabled emerging applications including intelligent biosensors, drug delivery, and biomimetic devices. Among the reactions, strand hybridization is the critical step to control the sensitivity and specificity of biosensing, and the efficiency of drug delivery. However, a comprehensive understanding of DNA hybridization on nanoparticles is still lacking, which may differ from the process in homogeneous solutions. To address this limitation, coarse-grained model-based molecular dynamic simulation is harnessed to disclose the critical factors involved in intermolecular hybridization. Based on simulation guidance, DNA walker-based smart theranostic platform (DWTP) based on "on-particle" hybridization is developed, showing excellent consistency with simulation. DWTP is successfully applied for highly sensitive miRNA 21 detection and tumor-specific miRNA 21 imaging, driven by tumor-endogenous APE 1 enzyme. It enables the precise release of antisense oligonucleotide triggered by tumor-endogenous dual-switch miRNA 21 and APE 1, facilitating effective gene silencing therapy with high biosafety. The simulation of "on-particle" DNA hybridization has improved the corresponding biosensing performance and the release efficiency of therapeutic agents, representing a conceptually new approach for DNA-based device design.

7.
Front Plant Sci ; 15: 1381018, 2024.
Article En | MEDLINE | ID: mdl-38660441

Autolysins are endogenous cell wall degrading enzymes (CWDEs) in bacteria that remodel the peptidoglycan layer of its own cell wall. In the Bacillus subtilis genome, at least 35 autolysin genes have been identified. However, the study of their roles in bacterial physiology has been hampered by their complexity and functional redundancy. B. subtilis GLB191 is an effective biocontrol strain against grape downy mildew disease, the biocontrol effect of which results from both direct effect against the pathogen and stimulation of the plant defense. In this study, we show that the autolysin N-acetylglucosaminidase LytD, a major autolysin of vegetative growth in B. subtilis, plays an important role in its biocontrol activity against grape downy mildew. Disruption of lytD resulted in reduced suppression of the pathogen Plasmopara viticola and stimulation of the plant defense. LytD is also shown to affect the biofilm formation and colonization of B. subtilis on grape leaves. This is the first report that demonstrates the role of an endogenous CWDE in suppressing plant disease infection of a biological control microorganism. These findings not only expand our knowledge on the biological function of autolysins but also provide a new target to promote the biocontrol activity of B. subtilis.

8.
Small ; : e2400142, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38676334

Complex temporal molecular signals play a pivotal role in the intricate biological pathways of living organisms, and cells exhibit the ability to transmit and receive information by intricately managing the temporal dynamics of their signaling molecules. Although biomimetic molecular networks are successfully engineered outside of cells, the capacity to precisely manipulate temporal behaviors remains limited. In this study, the catalysis activity of isothermal DNA polymerase (DNAP) through combined use of molecular dynamics simulation analysis and fluorescence assays is first characterized. DNAP-driven delay in signal strand release ranged from 100 to 102 min, which is achieved through new strategies including the introduction of primer overhangs, utilization of inhibitory reagents, and alteration of DNA template lengths. The results provide a deeper insight into the underlying mechanisms of temporal control DNAP-mediated primer extension and DNA strand displacement reactions. Then, the regulated DNAP catalysis reactions are applied in temporal modulation of downstream DNA-involved reactions, the establishment of dynamic molecular signals, and the generation of barcodes for multiplexed detection of target genes. The utility of DNAP-based signal delay as a dynamic DNA nanotechnology extends beyond theoretical concepts and achieves practical applications in the fields of cell-free synthetic biology and bionic sensing.

9.
World Neurosurg ; 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38642830

As histopathological aspects of dural arteriovenous fistulas (DAVFs) are often lacking, there can be controversies regarding their angioarchitecture. Depending on various statements or DAVF types, the shunts may be situated directly on the sinuses, at the confluence of sinuses and cortical veins, in adjacent vascular structures surrounding the sinus or even in the bone.1-5 Comprehensive knowledge of the intricate arteriovenous shunt anatomy is crucial for the secure and effective management of DAVFs.1 It has been confirmed that the dural arteries communicate with crack-like veins that connect one or more dural veins near the affected sinuses.3 In DAVFs, it is certain that one or more draining veins exist before draining into the venous sinus, as opposed to the commonly stated direct artery-to-sinus communication. Arteries branch and taper, while veins receive branches and thicken their lumens. We define fistulous points as the locations where the feeding arteries transition from thick to thin, and the draining veins transition from thin to thick. Here is an image description based based on superselective angiography.

10.
Heliyon ; 10(7): e27739, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38560164

Non-alcoholic fatty liver disease (NAFLD) is the most frequent cause of chronic liver disease, with a range of conditions including non-alcoholic fatty liver, non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma (HCC). Currently recognized as the liver component of the metabolic syndrome, NAFLD is intimately linked to metabolic diseases. Angiopoietin-like proteins (ANGPTLs) comprise a class of proteins that resemble angiopoietins structurally. It is closely related to obesity, insulin resistance and lipid metabolism, and may be the critical factor of metabolic syndrome. In recent years, many studies have found that there is a certain correlation between ANGPTLs and the occurrence and progression of NAFLD disease spectrum. This article reviews the possible mechanisms and roles of ANGPTL protein in the pathogenesis and progression of NAFLD.

11.
Epigenetics ; 19(1): 2337087, 2024 Dec.
Article En | MEDLINE | ID: mdl-38564758

Decidual macrophages are the second-largest immune cell group at the maternal-foetal interface. They participate in apoptotic cell removal, and protect the foetus from microorganisms or pathogens. Dysfunction of decidual macrophages gives rise to pregnancy complications such as preeclampsia and recurrent spontaneous miscarriage (RSM). However, the mechanisms by which decidual macrophages are involved in the occurrence of adverse pregnancy outcomes have not been elucidated. Here we integrated DNA methylation and gene expression data from decidua macrophages to identify potential risk factors related to RSM. GPR133 was significantly hypomethylated and upregulated in decidual macrophages from RSM patients. Further demethylation analysis demonstrated that GPR133 expression in decidual macrophages was significantly increased by 5-Aza-dC treatment. In addition, the influence of GPR133 on the phagocytic ability of macrophages was explored. Phagocytosis was impaired in the decidual macrophages of RSM patients with increased GPR133 expression. Increased GPR133 expression induced by demethylation treatment in the decidual macrophages of healthy control patients led to a significant decrease in phagocytic function. Importantly, knockdown of GPR133 resulted in a significant improvement in the phagocytic function of THP-1 macrophages. In conclusion, the existing studies have shown the influence of GPR133 on the phagocytic function of decidual macrophages and pregnancy outcomes, providing new data and ideas for future research on the role of decidual macrophages in RSM.


Abortion, Spontaneous , Decidua , Female , Humans , Pregnancy , Abortion, Spontaneous/genetics , Decidua/metabolism , DNA Methylation , Macrophages , Phagocytosis , Up-Regulation
12.
Animals (Basel) ; 14(8)2024 Apr 22.
Article En | MEDLINE | ID: mdl-38672396

Household buffalo dairy farming is gaining popularity nowadays in Bangladesh because of the outstanding food value of buffalo milk as well as the lower production cost of buffalo compared to cattle. An initiative has recently been taken for the genetic improvement of indigenous dairy buffaloes. The present study was carried out to determine the influence of some environmental factors like age, parity, season of calving, calving interval, dry period on the lactation yield, and lactation curve of indigenous dairy buffaloes of Bangladesh. A total of 384 indigenous dairy buffaloes from the 3rd and 4th parity of seven herds under two different agroecological zones covering four seasons were selected and ear tagged for individual buffalo milk recording. A milk yield of 300 days (MY300d) was calculated following the International Committee for Animal Recording (ICAR) and the data were evaluated using the generalized linear model (GLM). In production traits, the mean of calculated lactation period (CLP), calculated lactation yield (CLY), and milk yield of 300 days (MY300d) of the overall population were 267.28 days, 749.36 kg, and 766.92 kg, respectively, whereas calving interval (CI) and dry period (DP) as reproductive traits were 453.06 days and 185.78 days, respectively. The season of calving, age of buffalo cows, population or herd, agroecological zone, calving interval, and dry period had significant effects on production traits (p < 0.05 to p < 0.001). The season of calving, level of milk production of 300 days, population, and agroecological zone significantly affected the reproduction traits (p < 0.01 to p < 0.001). Parity was found to be non-significant for both types of traits. The average peak yield of test day (TD) milk production was highest at TD4 (4.47 kg, 98th day of lactation). The average MY300d of milk production was the highest in the Lalpur buffalo population (1076.13 kg) and the lowest in the buffalo population of Bhola (592.44 kg). The correlations between milk production traits (CLP, CLY, and MY-300d) and reproduction traits (CI and DP) were highly significant (p < 0.01 to p < 0.001). Positive and high correlation was found within milk traits and reproduction traits, but correlation was negative between milk traits and reproduction traits. Therefore, these non-genetic factors should be considered in the future for any genetic improvement program for indigenous dairy buffaloes in Bangladesh.

13.
Am J Cancer Res ; 14(3): 1419-1432, 2024.
Article En | MEDLINE | ID: mdl-38590411

The pathogenesis of glioma has remained unclear. In this study, it was found that high expression of the outer dense fibers of sperm tail 3B (ODF3B) in gliomas was positively correlated with the grade of glioma. The higher the grade, the worse the prognosis. ODF3B is closely related to the growth and apoptosis of glioma. In terms of mechanism, ODF3B was found to affect the proliferation and apoptosis of glioma through the JAK1 and JAK2/STAT3 pathways. ODF3B was also found to affect the growth and apoptosis of glioma in vivo. We conclude that ODF3B affects glioma proliferation and apoptosis via the JAK/STAT pathway and is a potential therapeutic target.

14.
PLoS One ; 19(4): e0299374, 2024.
Article En | MEDLINE | ID: mdl-38573976

BACKGROUND AND AIMS: The coronavirus disease 2019 (COVID-19) public health emergency has had a huge impact worldwide. We analyzed news headlines and keywords from the initial period of COVID-19, and explored the dissemination timeline of news related to the epidemic, and the impact of Internet-based media on the public using lifecycle theory and agenda-setting theory. We aimed to explore the impact of Baidu news headlines on public attention during the first wave of COVID-19, as well as the management mechanism of regulatory departments for social public opinion. METHODS: We searched Baidu News using the keywords "Novel Coronavirus" and "COVID-19" from 8 January to 21 February 2020, a total of 45 days, and used Python V3.6 to extract news samples during the first wave of the epidemic. We used text analysis software to structurally process captured news topics and content summaries, applied VOSviewer V6.19 and Ucinet V6.0 to examine key aspects of the data. RESULTS: We analyzed the impact of Baidu News headlines on social opinion during the first wave of COVID-19 in the budding, spread, and outbreak stage of the information lifecycle. From clustering visualization and social network analysis perspectives, we explored the characteristics of Baidu News during the initial stage of the COVID-19. The results indicated that agenda-setting coverage through online media helped to mitigate the negative impact of COVID-19. The findings revealed that news reporting generated a high level of public attention toward a specific emergency event. CONCLUSIONS: The public requires accurate and objective information on the progress of COVID-19 through Baidu News headlines to inform their planning for the epidemic. Meanwhile, government can enhance the management mechanism of news dissemination, correct false and inaccurate news, and guide public opinion in a positive direction. In addition, timely official announcements on the progress of the COVID-19 outbreak and responses to matters of public concern can help calm tensions and maintain social stability.


COVID-19 , Social Media , Humans , COVID-19/epidemiology , Public Opinion , Emergencies , SARS-CoV-2 , Internet
15.
Cancer Lett ; 592: 216905, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38677641

Craniopharyngiomas (CPs), particularly Adamantinomatous Craniopharyngiomas (ACPs), often exhibit a heightened risk of postoperative recurrence and severe complications of the endocrine and hypothalamic function. The primary objective of this study is to investigate potential novel targeted therapies within the microenvironment of ACP tumors. Cancer-Associated Fibroblasts (CAFs) were identified in the craniopharyngioma microenvironment, notably in regions characterized by cholesterol clefts, wet keratin, ghost cells, and fibrous stroma in ACPs. CAFs, alongside ghost cells, basaloid-like epithelium cells and calcifications, were found to secrete PROS1 and GAS6, which can activate AXL receptors on the surface of tumor epithelium cells, promoting immune suppression and tumor progression in ACPs. Additionally, the AXL inhibitor Bemcentinib effectively inhibited the proliferation organoids and enhanced the immunotherapeutic efficacy of Atezolizumab. Furthermore, neural crest-like cells were observed in the glial reactive tissue surrounding finger-like protrusions. Overall, our results revealed that the AXL might be a potentially effective therapeutic target for ACPs.

16.
Anim Genet ; 55(3): 457-464, 2024 Jun.
Article En | MEDLINE | ID: mdl-38622758

The common deleterious genetic defects in Holstein cattle include haplotypes 1-6 (HH1-HH6), haplotypes for cholesterol deficiency (HCD), bovine leukocyte adhesion deficiency (BLAD), complex vertebral malformation (CVM) and brachyspina syndrome (BS). Recessive inheritance patterns of these genetic defects permit the carriers to function normally, but homozygous recessive genotypes cause embryo loss or neonatal death. Therefore, rapid detection of the carriers is essential to manage these genetic defects. This study was conducted to develop a single-tube multiplex fluorescent amplification-refractory mutation system (mf-ARMS) PCR method for efficient genotyping of these 10 genetic defects and to compare its efficiency with the kompetitive allele specific PCR (KASP) genotyping assay. The mf-ARMS PCR method introduced 10 sets of tri-primers optimized with additional mismatches in the 3' end of wild and mutant-specific primers, size differentiation between wild and mutant-specific primers, fluorescent labeling of universal primers, adjustment of annealing temperatures and optimization of primer concentrations. The genotyping of 484 Holstein cows resulted in 16.12% carriers with at least one genetic defect, while no homozygous recessive genotype was detected. This study found carrier frequencies ranging from 0.0% (HH6) to 3.72% (HH3) for individual defects. The mf-ARMS PCR method demonstrated improved detection, time and cost efficiency compared with the KASP method for these defects. Therefore, the application of mf-ARMS PCR for genotyping Holstein cattle is anticipated to decrease the frequency of lethal alleles and limit the transmission of these genetic defects.


Genotyping Techniques , Animals , Cattle/genetics , Genotyping Techniques/veterinary , Genotyping Techniques/methods , Cattle Diseases/genetics , Multiplex Polymerase Chain Reaction/veterinary , Genotype , Polymerase Chain Reaction/veterinary , Mutation
17.
Biomed Pharmacother ; 173: 116333, 2024 Apr.
Article En | MEDLINE | ID: mdl-38479177

Metabolic dysfunction-associated steatotic liver disease(MASLD), formerly known as non-alcoholic fatty liver disease(NAFLD), has become a major cause of chronic liver disease and a significant risk factor for hepatocellular carcinoma, which poses a huge burden on global public health and economy. MASLD includes steatotic liver disease, steatohepatitis, and cirrhosis, and the latter two cause great harm to human health and life, even complicated with liver cancer. Immunologic mechanism plays a major role in promoting its development into hepatitis and cirrhosis. Now more and more evidences show that T cells play an important role in the progression of MASLD. In this review, we discuss the double roles of T cells in MASLD from the perspective of T cell response pathways, as well as new evidences regarding the possible application of immunomodulatory therapy in MASH.


Carcinoma, Hepatocellular , Non-alcoholic Fatty Liver Disease , Humans , Liver Cirrhosis , Immunomodulation , Immunity
18.
J Infect Dis ; 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38547503

BACKGROUND: Chlamydia trachomatis is the causative agent of most prevalent bacterial sexually transmitted infection globally. Whole-genome sequencing is essential for molecular Chlamydia surveillance; however, its application is hampered by the pathogen's low abundance in clinical specimens and the expensive, labor-intensive nature of existing enrichment methodologies for Chlamydia. METHODS: We developed a targeted whole-genome amplification tool termed SWTICH, by integrating phi29 DNA polymerase-mediated amplification with meticulously designed primer sets to enrich Chlamydia trachomatis genome, followed by whole-genome sequencing. This method underwent evaluation through testing synthetic and clinical specimens. RESULTS: SWITCH demonstrated robust ability to achieve up to 98.3% genomic coverage of Chlamydia trachomatis from as few as 26.4 genomic copies present in synthetic specimens and exhibited excellent performance across diverse Chlamydia trachomatis serovars. Utilizing SWITCH, we directly generated 21 Chlamydia genomes from 26 clinical samples, enabling us to gain insights into the genetic relationships and phylogeny of current Chlamydia strains circulating in the country. Remarkably, this study marked the first instance of generating Chinese Chlamydia genomes directly from clinical samples. CONCLUSIONS: SWITCH represents a practical, cost-efficient approach to enrich Chlamydia genome directly from clinical specimens, offering an efficient avenue for molecular surveillance of Chlamydia.

19.
Comput Biol Med ; 173: 108333, 2024 May.
Article En | MEDLINE | ID: mdl-38522250

Nowadays, the use of biological signals as a criterion for identity recognition has gained increasing attention from various organizations and companies. Therefore, it has become crucial to have a biometric identity recognition method that is fast and accurate. In this paper, we propose a linear electrocardiogram (ECG) data preprocessing algorithm based on Kalman filters for rapid noise data filtering (wavelet transform filtering algorithm). Additionally, we introduce a generative network model called Data Generation Strategy Network (DRCN) based on generative networks. The DRCN is employed to augment training samples for convolutional classification networks, ultimately improving the classification performance of the model. Through the final experiments, our method successfully reduced the average misidentification rate of ECG-based identity recognition to 2.5%, and achieved an average recognition rate of 98.7% for each category, significantly surpassing previous achievements. In the future, this method is expected to be widely applied in the field of ECG-based identity recognition.


Algorithms , Signal Processing, Computer-Assisted , Wavelet Analysis , Biometry , Electrocardiography/methods
20.
Angew Chem Int Ed Engl ; : e202402886, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38526333

A novel one-pot deracemization method using a bifunctional chiral agent (BCA) is proposed for the first time to convert a racemate to the desired enantiomer. Specifically, chiral α, (α-diphenyl-2-pyrrolidinemethanol) formed enantiospecific cocrystals with racemic dihydromyricetin, and used its own alkaline catalysis to catalyze the racemization between the (2R,3R)-enantiomer and (2S,3S)-enantiomer in solution, achieving a one-pot spontaneous deracemization. This strategy was also successfully extended to the deracemization of three other racemic compound drugs: (R,S)-carprofen, (R,S)-indoprofen, and (R,S)-indobufen. The one-pot deracemization method based on the BCA strategy provides a feasible approach to address the incompatibility between cocrystallization and racemization reactions that are commonly encountered in the cocrystallization-induced deracemization process and opens a new window to develop essential enantiomerically pure pharmaceutical products with atom economy.

...